

ABOUT

The Egyptian German Industrial Corporate - EGIC was founded in 1991 to market all types of sanitary products and related accessories. Joining Bänninger, our German partners, we introduced PP-R systems to the water supply in the Egyptian market, then expanded our entire production to produce and market all types of reliable plumbing and sanitary products.

EGIC has established top-class manufacturing facilities; including four facilities in Egypt and one in Germany, where we produce water supply and drainage solutions from numerous plastic materials and copper (polypropylene, PVC and polyethylene) under the best-known brands; Bänninger, Kessel, and Smart Home. One of those four factories is the largest copper foundry in the Middle East that manufactures the purest bronze bars, valves, and other related accessories.

By constantly adapting our products to the needs of the market, EGIC eventually became a trendsetter and a leading developer of benchmark quality in polymer and plastic products. We manufacture an economically innovative wide product range of PP-R pipes and fittings for drinkable cold & hot water as well as PP & PVC pipes and fittings for drainage, where we provide complete home solutions for different residential and industrial projects across the world.

Our applied raw material technologies optimize the material characteristics for the protection of the environment. The use of polypropylene raw materials for manufacturing ensures a socially compatible, hygienic and healthy packaging for the most precious commodity: clean drinking water

Our promise is to not only satisfy but to also exceed our customers' expectations by offering them the highest quality products as well as a wide range of support services. Our outstanding customer relations skills ensure efficient delivery, which in return results in customer loyalty.

At EGIC we believe in teamwork, progress, honesty, open communication and a better tomorrow.

Founded by Omar Safey El Dine

EGIC company was established in early **1991** with the intent to market all types of plumbing-related products. Overtime, **EGIC** is a **pioneer and market leader** in manufacturing pipes and fittings for water supply and drainage, using numerous plastic materials: Polypropylene, PVC and Polyethylene. As a result, the company was positioned as a main sanitary solution supplier in the construction value chain, and was known for its superior, high-quality, German products.

EGIC's Timeline since 1991

EGIC was founded as an importer of top-class plumbing products.
EGIC was the first company to introduce PPR water supply solutions to the Egyptian Market.
EGIC launched its integrated customer service loyalty program. EGIC introduced a new PP push-to-fit drainage solutions.
EGIC started its first corporate social responsibility initiative via establishing Nahdet Beni Suief Foundation.
EGIC established its first manufacturing facility to locally produce PPR water supply solutions.
EGIC expanded to its second manufacturing facility to locally produce UPVC drainage solutions.
EGIC implemented the SAP system. EGIC established the Egyptian Plumbers Foundation as part of EGIC's corporate social responsibility program.
EGIC launched its PVC cleaning cement & adhesives as well as new pumping systems in order to provide an integrated and complete home solution strategy. EGIC acquired its third manufacturing facility.
EGIC established one of the largest bronze and brass foundries in the Middle East.
EGIC expanded its manufacturing process to produce the new Kessel shower drains and Smart Home accessories.

EGIC Facilities

- Cairo Head Office.
- Bani Suef Manufacturing Facility.
- Bani Suef Bronze/Brass Foundry.
- October | Manufacturing Facility.
- October Il Manufacturing Facility.
- Customer Service Branches Across Egypt.

QUALITY ASSURANCE

Our promise is to be a dependable provider of comprehensive and integrated home solutions of superior German quality, with the support of our exemplary customer care service, comprehensive warranties, and outstanding distribution network.

EGIC's entire production line has been adjusted to fit European standards, which have been previously approved and certified by different accredited independent international institutes.

Those standards are being sustained by our Quality Assurance laboratories which test all raw materials, products and effectiveness.

All products undergo tests in abnormal conditions to guarantee optimum quality, through using the highest quality raw material BOREALIS, basell, implying the required standards of the following certifications: DVGW, SKZ, EOS, GL, NOPWASD, IGH and Certificates of quality process ISO 9001, ISO 14001, ISO 17025.

COMPLETE HOME SOLUTIONS

Home is where most of our time is spent, and investing in high-quality water Plumbing solutions is of the upmost importance, in order to ensure a stable water supply for a peaceful and hassle-free life.

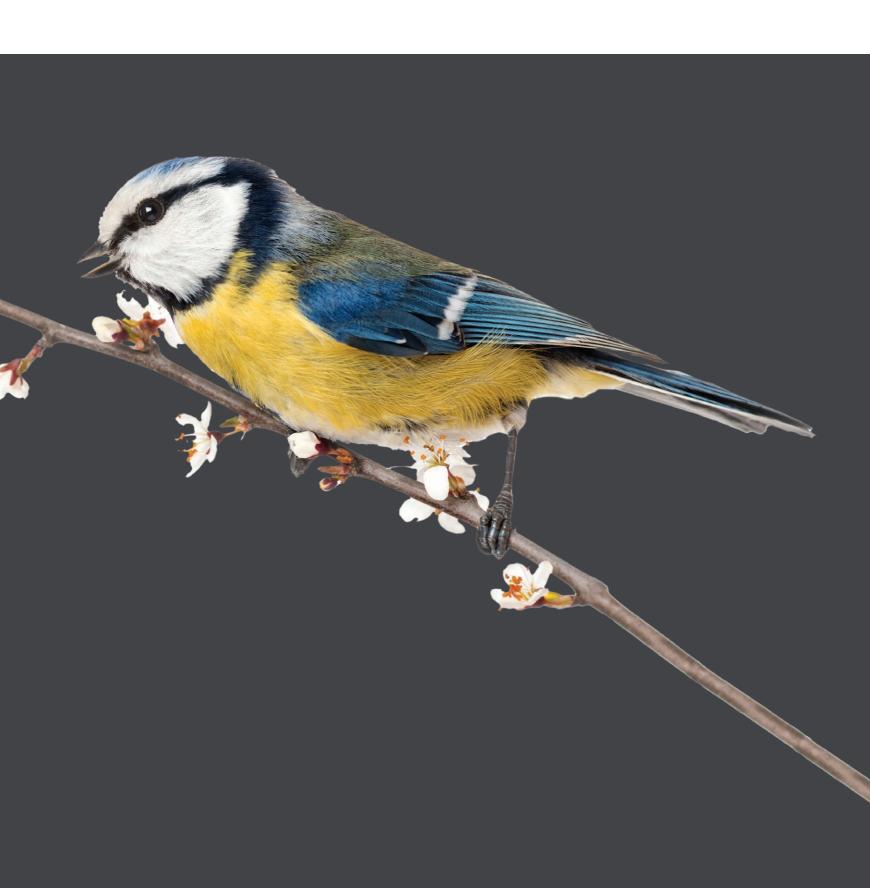
- 1 PP-R Water Supply Solutions
- 2 PPR-R Water Supply Solutions with UV Resistance
- 3 PVC Drainage Solutions
- 4 Floor Drains
- 5 Gully traps
- 6 Inspection Chamber for Outdoor Drainage Solutions
- 7 Backwater Valve for Outdoor Drainage Solutions
- 8 Underground Push to Fit Drainage Solutions
- 9 Lifting Station for Basements
- 10 Water channels for Garage and Swimming Pools

Related Plumbing Solutions: Valves, Flexible Hoses, Lubricant, Adhesives, Waterproof cementitious coating and water pumps.

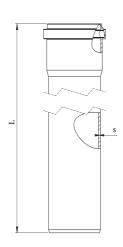
Chemical Characteristics 40

ABOVE GROUND PRODUCTS

Technical Information

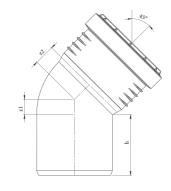

EGIC offers the German Kessel Aboveground Systems to be used in and around building installations, which are designed from highly flexible and durable materials for different operating conditions, and characterized by their ease of installation and maintenance by means of non-permanent installation systems and without any adhesive or harmful materials. This results in efficient operation for long years on end, under the guarantee of EGIC.

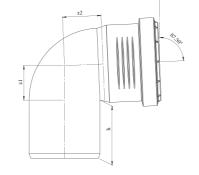
These systems are distinguished by their vast variety of designs and sizes for pipes, fittings and floor drains to fit all possible uses and to give flexibility to both the designer and the plumber in the design and installation process even in hard and narrow locations and routes.


Kessel Aboveground Systems are made of high quality polypropylene PP, designed according to European standard specifications DIN EN 1451, and integrated with kessel floor drains which are made of Acrylonitrile-Butadiene-Styrene (ABS) and high-quality stainless steel 304 in a variety of sizes and designs to fit all uses, styles and finishes, in order to guarantee ease of inspection as well as efficient and quick drainage.

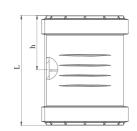
Kessel Aboveground Systems start from the 32mm size, which is suitable for air-conditioning discharge usage, up to the 160mm size, which is suitable to use in whole building discharges. Additionally, there is also a variety of sizes in between, to suit different building discharges.

These Aboveground Systems use two main designs for both body and socket gaskets, in order to suit the operating conditions, and to give pipes and fittings extra strength in loading, withstanding and sealing. Kessel Aboveground Systems are suitable for all water and sewage gravity discharging with operational temperatures that reach up to 95°C as well as an efficient solids slipping system and excellent resistance to most chemicals for several long years, in addition to the ability to withstand all building loads with the proper installation.



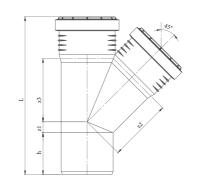

Code	dn	ι	S	kg
332020009	32	3000	2	0.565
342010002	50	750	1.8	0.221
342030001	50	1500	1.8	0.443
332020001	50	3000	1.8	0.859
332020014	63	3000	2.5	0.495
342020001	75	1000	1.9	0.471
332020002	75	3000	1.9	1.421
332020007	75	3000	2.9	1.956
342020002	110	1000	2.7	0.972
332020003	110	3000	2.7	3
332020008	110	3000	4.1	4.053
332020005	160	3000	3.9	6.018
332020004	160	6000	3.9	11.988

Code	dn	z1	z2	h	kg
352010008	32	6	7	47	0.022
352010002	50	10	15	58	0.061
352010010	63	13	17	55	0.070
352010003	75	12	15	63	0.097
352010004	110	18	20	65	0.227
352010005	160	20	43	96	0.711

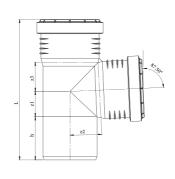


Code	dn	z1	z2	h	kg
352020008	32	15	20	46	0.024
352020002	50	22	37	56	0.067
352020010	63	30	34	55	0.083
352020003	75	30	44	63	0.118
352020004	110	47	66	78	0.282
352020005	160	70	92	96	0.851

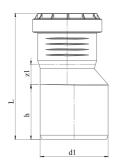
Bend 87.5°



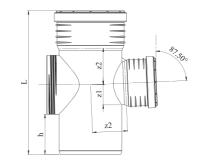
Code	dn	ι	h	kg
352080009	32	89	43	0.025
352080002	50	106	52	0.064
352080010	63	102	50	0.067
352080003	75	115.3	56.4	0.105
352080004	110	131.5	64.8	0.214
352080005	160	185.4	90	0.852


Code	dn	z1	z2	z3	h	ι	kg
352040015	32/32	8	38	36	48	132	0.040
352040003	50/50	11	63.5	63.5	56.5	180	0.113
352040016	63/63	13	77	77	55.3	200	0.140
352040005	75/50	17	70	56	59.6	187	0.140
352040006	75/75	16	93	93	61	225	0.199
352040007	110/50	20	86	53	68	208	0.274
352040008	110/75	20	105	90	68	244	0.342
352040009	110/110	24	137	137	72	297	0.460
352040013	160/110	10	142	142	90	354	1050
352040011	160/160	23.4	200	200	90	425	1535

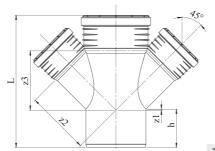
Branch 45°


Code	dn	z1	z2	z3	h	ι	kg
352050016	32/32	13	20	21	46	120	0.036
352050003	50/50	24	30	30	56	185	0.101
352050017	63/63	30	34.5	34.5	55.3	176	0.122
352050005	75/50	25	29	30	60	167	0.140
352050006	75/75	35	44	44	63	196	0.168
352050007	110/50	20	64	35	68	183	0.236
352050008	110/75	35	59	42	71	214	0.292
352050009	110/110	54	62	60	63	237	0.356
352050012	160/110	50	92	62	90	309	0.920
352050010	160/160	70	92	92	90	360	1248

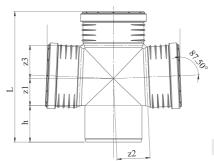
Branch 87.5°


Code	dn	d1	z1	h	ι	kg
352092008	50/32	50	13	55	113	0.043
352092007	50/1"	50	13	55	113	0.041
352092001	50/40	50	20	60	123	0.047
352092012	63/50	63	19	55	121	0.061
352092002	75/50	75	31.5	60.5	140	0.077
352092013	75/63	75	19	60	132	0.077
352092003	110/50	110	37	70	155	0.132
352092004	110/75	110	26	70	150	0.140
352092005	160/110	160	47	90	215	0.460

Eccentric Reducer


Code	dn	z1	z2	z3	h	ι	kg
352060003	75/75	32	42	44	63	193	0.222
352060001	110/50	23	66	62	100	250	0.403
352060004	110/75	32	42	45	62	248	0.418
352060002	110/110	48	66	62	75	250	0.471
352060005	160/110	50	92	62	90	309	1052
352060006	160/160	70	92	92	90	360	1410

Branch with Inspection Access



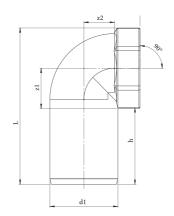
Double	Branch	45°
	Dianch	TJ

Code	dn	z1	z2	z3	h	ι	kg	
352070002	75/75	2	107	107	63	225	0.256	
352070006	110/75	2	116	105	71	243	0.429	
352070004	110/110	2	151	155	77	298	0.624	



Double Branch 87.5°

Code	dn	z1	z2	z3	h	ι	kg	
352070007	75/75	33	44	44	62	193	0.235	
352070005	110/75	33	63	46	71	215	0.355	
352070008	110/110	48	65	63	76	252	0.508	

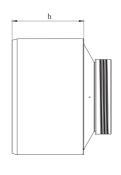


Code	dn	ι	h	kg
352080009	32	89	43	0.025
352080002	50	106	52	0.064
352080010	63	102	50	0.067
352080003	75	115.3	56.4	0.105
352080004	110	131.5	64.8	0.214
352080005	160	185.4	90	0.852

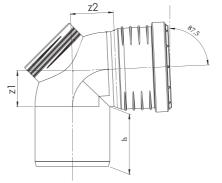
Code	dn	h	ι	kg
352090001	50	56	115	0.100
352090002	75	63	142	0.160
352090003	110	75	185	0.387

Code	dn	h	kg
352091006	32	43	0.009
352091002	50	30	0.012
352091003	75	30	0.023
352091004	110	35	0.054
352091005	160	70	0.140

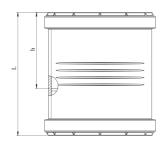
Plug


Code	dn	h	kg
352091008	50	25	0.015
352091009	75	34	0.034
352091010	110	35	0.048
352091011	160	50	0.106

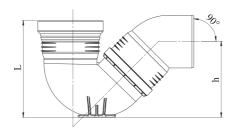
Pipe Cover


Code	dn	h	kg
352094001	110	74	0.173
352094002	160	108	0.337

Cleaning Plug


Code	dn	z1	z2	h	kg
352030004	75	27	51	66	0.163
352030003	110	47	66	75	0.363
352030005	160	20	43	96	0.980

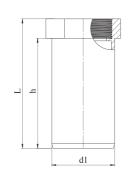
Bend with inspection access



Rei	pairir	α so	CKET
1,0	pann	19 50	CITCL

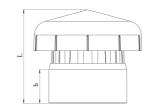
Code	dn	h	ι	kg
352080013	110	137	200	0.210
352080014	160	137	200	0.565

kg

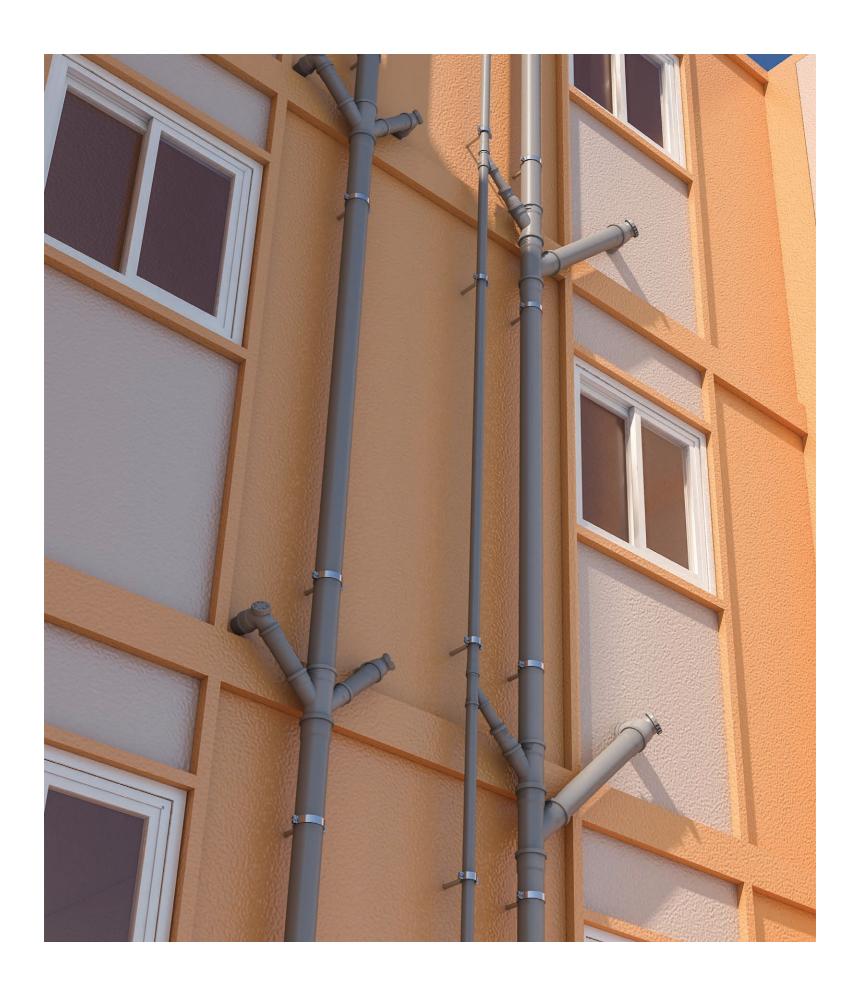


Siphon	352099904	110/110	175	201	0.668

Code



Socket with inner thread


Code	dn	d1	h	ι	kg
352080012	50/1.5"	50	83.5	100	0.039

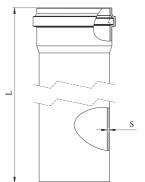
Code	dn	h	ι	kg
352093001	50	31.4	75	0.032
352093002	75	40	102	0.067
352093003	110	49.7	145	0.151

Vent

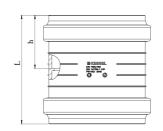
Technical Information

EGIC also offers the German Kessel Underground Systems that are used in roadway installations, which are designed using highly flexible and durable materials for different operating conditions, and characterized by their ease of installation and maintenance by means of non-permanent installation systems and without any adhesive or harmful materials. This results in efficient operation for several years under the guarantee of EGIC.

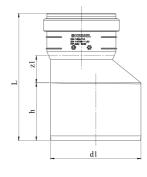
Kessel Underground Systems are made of high-quality Polypropylene PP, and designed according to European standard specifications BS EN 1852-1. Kessel Underground Systems come in different sizes: 160mm and 200mm, which are suitable for all water and sewage gravity discharging with operational temperatures that reach up to 95°C with an efficient solids slipping system and excellent resistance to most chemicals for long durations, with the ability to withstand external pressures up to 4000 N/m2.


__GROUND PRODUCTS UNDER

UNDER GROUND PRODUCTS - PIPES

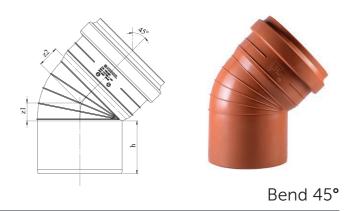


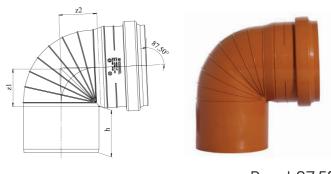
Code	dn	ι	S	kg
332020006	160	300	5.5	8.326
332020010	200	300	6.7	12.752


Pipes with Socket

					- 1	1	
1)	\cap	ın	10	Sc	\sim	ĸ	മാ

Code	dn	h	ι	kg
352080007	160	100	194	0.98
352080008	200	107	220	1.196

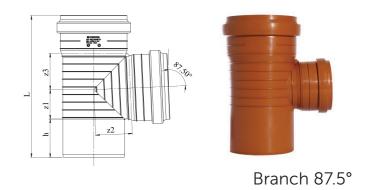



Eccentric Reducer

Code	dn	d1	z1	h	ι	kg
352092006	160/110	160	47	150	225	0.550
352092011	200/110	200	39	164	240	0.830
352092009	200/160	200	37	159	260	0.958

Code	dn	z1	z2	h	kg
352010006	160	28	47	100	0.844
352010009	200	35	50	120	1.420

Code	dn	z1	z2	h	kg
352020006	160	76	92	100	0.963
352020009	200	97	110	120	1.727



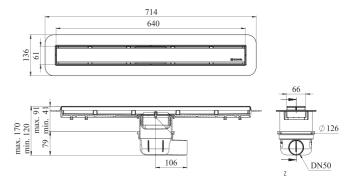
Bend 87.5°

Code	dn	z1	z2	z3	h	ι	kg
352040014	160/110	20	146	146	100	366	1.264
352040012	160/160	20	200	200	100	437	1.718

h z1 z3	75°	
		Branch 45°

Code	dn	z1	z2	z3	h	ι	kg
352050013	160/110	47	70	70	100	320	1.075
352050011 352050015	160/160 200/160	70 76	90 117	90 117	100 121	370 410	1.440 2.041
352050014	200/200	76	120	92	121	450	2.455

FLOOR DRAINS


Kessel drains are designed with superior German quality to receive and convey wastewater to the main sewerage. These drains fit modern and elegant bathrooms, floors, kitchens, or roof areas where standing water is expected. We offer a large choice of drain covers made of stainless steel to fit modern and elegant designs and withstand up to 300 Kg also plastic covers that fit the main floor drain indoor. Each drain includes a special removable odor trap to prevent unpleasant odors. Kessel drain bodies are made of ABS to tolerate heavy loads with excellent resistance to chemicals and adjust high flow rates.

SHOWER CHANNELS / SHOWER DRAINS

375020012 Shower Channel 650 mm

Description

Shower channel made of ABS with linear removable odor trap

Includes installed trap sealed with O-ring to prevent unpleasant odors

Includes hair filter to avoid blockage

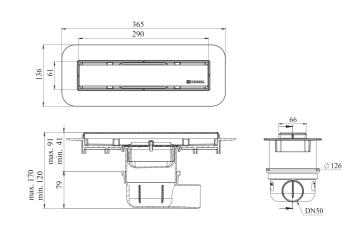
48 L/min. Flow rate at installation height of 120 mm

Cover

Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance

Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions


650x60 mm

lateral outlet Ø 50

Adjustable height between 120 mm and 170 mm

375020011 Shower Channel 300 mm

Description

hower channel made of ABS with linear removable odor trap

Includes installed trap sealed with O-ring to prevent unpleasant odors

Includes hair filter to avoid blockage

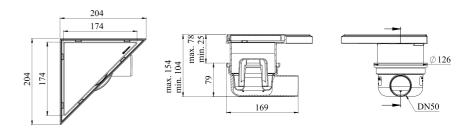
48 L/min. Flow rate at installation height of 120 mm

Cover

Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance

Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions


300x60 mm

lateral outlet Ø 50

Adjustable height between 120 mm and 170 mm

375020017 Corner Shower Drain

Description

Corner Drain made of ABS with circular removable odor trap

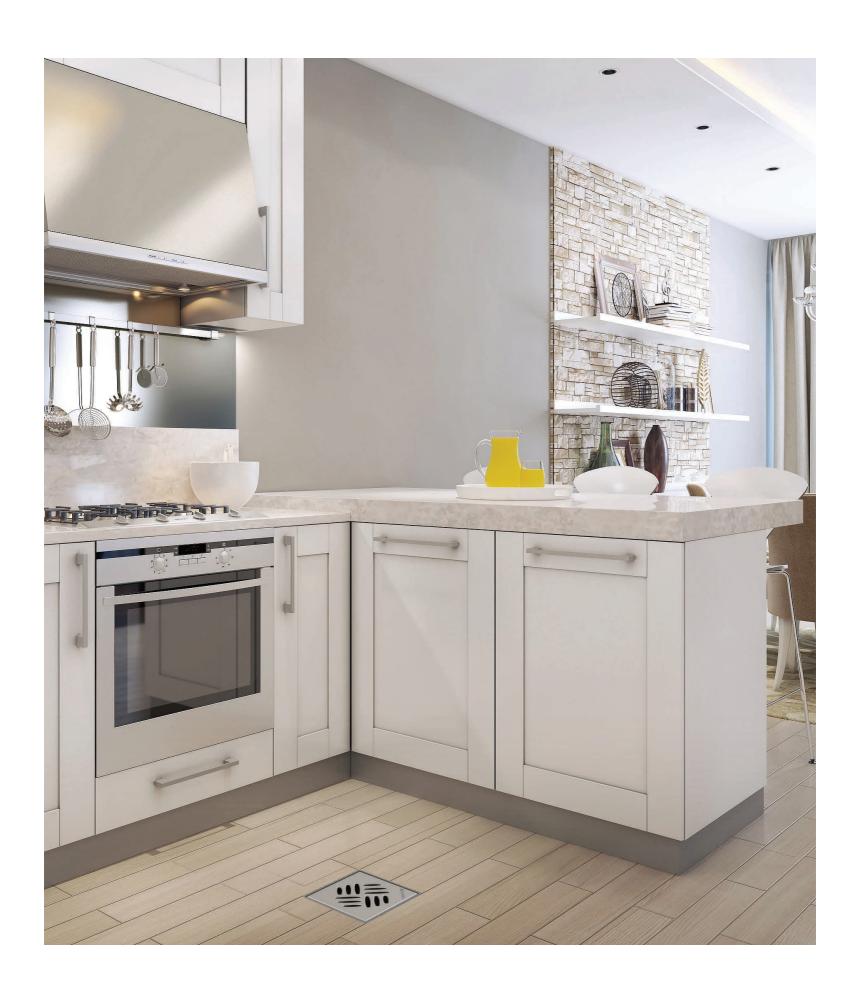
Includes installed trap sealed with O-ring to prevent unpleasant odors

36 L/min. Flow rate at installation height of 104 mm

Cover

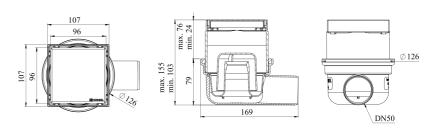
Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance

Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

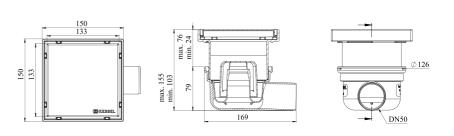

Dimensions

lateral outlet Ø 50

Adjustable height between 104 mm and 154 mm

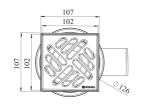


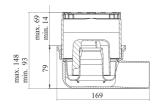
Point Drain with Tileable Cover

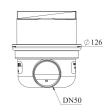


Description	Cover	Dimensions
Point Drain made of ABS with circular removable odor trap	Tileable stainless-steel cover 304 to install the ceramic into to give the	100x100 mm
	floor a homogenous appearance	lateral outlet Ø 50
Includes installed trap sealed with		
O-ring to prevent unpleasant odors	Excellent resistance for chemicals and anti-rust that withstand up to 300Kg	Adjustable height between 103 mm and 155 mm
30 L/min. flow rate at an installation height of 103 mm		

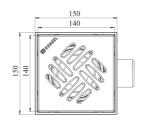
Point Drain with Tileable Cover

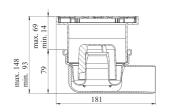


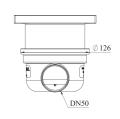



Description	Cover	Dimensions
Point drain made of ABS with circular removable odor trap	Tileable stainless-steel cover 304 to install the ceramic into to give the	150x150 mm
	floor a homogenous appearance	lateral outlet Ø 50
Includes installed trap sealed with		
O-ring to prevent unpleasant odors	Excellent resistance for chemicals and anti-rust that withstand up to 300Kg	Adjustable height between 103 mm and 155 mm
36 L/min. Flow rate at installation height of 103 mm		

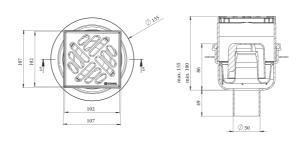
375020013 Point Drain with Open Cover






Description	Cover	Dimensions
Point drain made of ABS with circular removable odor trap	Open stainless-steel cover 304	100x100 mm
Includes installed trap sealed with	Excellent resistance for chemicals and anti-rust that withstand up to 300Kg	lateral outlet ∅ 50
O-ring to prevent unpleasant odors		Adjustable height between 93 mm and 148 mm
36 L/min. Flow rate at installation height of 93 mm		

375020014 Point Drain with Open Cover



Description	Cover	Dimensions
Point Drain made of ABS with circular removable odor trap	Open stainless-steel cover 304	150x150 mm
Includes installed trap sealed with	Excellent resistance for chemicals and	lateral outlet Ø 50
O-ring to prevent unpleasant odors	anti-rust that withstand up to 300Kg	Adjustable height between 93 mm and 148 mm
36 L/min. Flow rate at installation height of 93 mm		

375020030 Point Drain with vertical outlet

Description

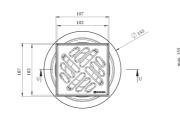
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 36 L/min. Flow rate. Installation area 220×180 mm

Cover

Open stainless-steel cover 304


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

100x100 mm With Vertical outlet Ø 50

375020031 Point Drain with vertical outlet

Description

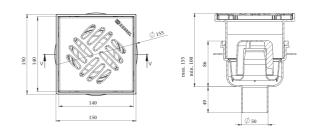
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 36 L/min. Flow rate. Installation area 220×180 mm

Cover

Open stainless-steel cover 304


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

100x100 mm With Vertical outlet Ø 75

375020032 Point Drain with vertical outlet

Description

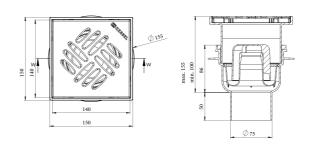
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 36 L/min. Flow rate. Installation area 220×180 mm

Cover

Open stainless-steel cover 304


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

150x150 mm With Vertical outlet Ø 50

375020033 Point Drain with vertical outlet

Description

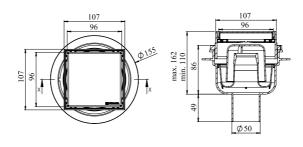
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 36 L/min. Flow rate. Installation area 220×180 mm

Cover

Open stainless-steel cover 304


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

150x150 mm With Vertical outlet \emptyset 75

375020037 Point Drain with vertical outlet

Description

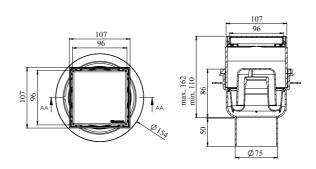
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 30 L/min. Flow rate. Installation area 220×180 mm

Cover

Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

100x100 mm With Vertical outlet Ø 50

375020036 Point Drain with vertical outlet

Description

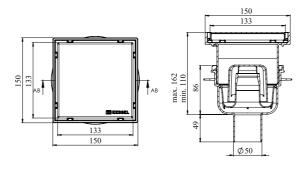
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 30 L/min. Flow rate. Installation area 220×180 mm

Cover

Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

100x100 mm With Vertical outlet Ø 75

375020035 Point Drain with vertical outlet

Description

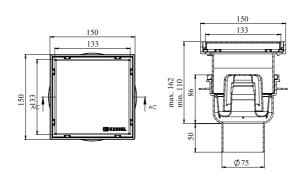
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 36 L/min. Flow rate. Installation area 220×180 mm

Cover

Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

Dimensions

150x150 mm With Vertical outlet Ø 50

375020034 Point Drain with vertical outlet

Description

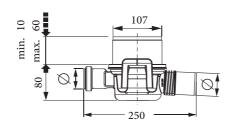
Point drain made of ABS with circular removable odor trap

Sealing water height 50 mm, with fixed lip seal.

Drainage capacity 36 L/min. Flow rate. Installation area 220×180 mm

Cover

Tileable stainless-steel cover 304 to install the ceramic into to give the floor a homogenous appearance


Excellent resistance for chemicals and anti-rust that withstand up to 300Kg

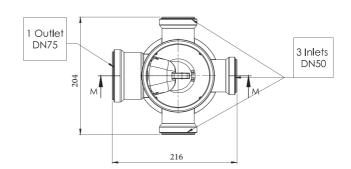
Dimensions

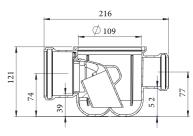
150x150 mm With Vertical outlet Ø 75

Kitchen drain

Description	Cover	Dimensions
Kitchen drain made of ABS with circular removable odor trap	Open stainless-steel cover 304	100x100 mm
·	Excellent resistance for chemicals and	Lateral inlet Ø 40 and integrated
Sealing water height 50 mm, with fixed lip seal.	anti-rust that withstand up to 300Kg	body gasket
		Flexible lateral outlet Ø 50
Drainage capacity 48L/min. flow rate.		
Installation area 260×180 mm Article number: 42701.20		

Point drain with lateral outlet


Description	Cover	Dimensions
Point drain with lateral outlet made of ABS with circular removable odor trap	Open stainless-steel cover 304	100x100 mm
Sealing water height 50 mm, with fixed lip seal.	Excellent resistance for chemicals and anti-rust that withstand up to 300Kg	Flexible lateral outlet 75
Drainage capacity 48L/min. flow rate. Installation area 220 × 180 mm Article number: 40170.20		



FLOOR DRAINS

375020001 Floor Drain

Description

Floor Drain in ABS with removable odor trap

Hydraulically designed for self-cleaning and maximum flow

63 L/min. Flow rate

Pipe connection can be glue fitted or push fitted with available gaskets

Chemical resistance

Impact resistance

Cover

Fits with all Kessel floor/bathroom drain upper sections (150x150)mm

Dimensions

Three lateral Ø50 inlets with one lateral Ø75 outlet

Outlet, reduction available Ø50 / Ø75

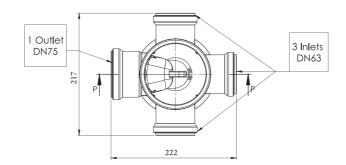
Inlet, reduction available Ø40 / Ø50

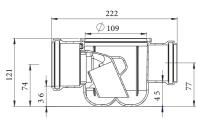
SBR GASKET

Made of special rubber types used for push and fit drainage solutions where users can easily reassemble the joints on-site. Kessel gaskets are known for their flexibility and durability in preventing dust and eliminating leakage.

For Drainage Solutions (32-110mm)

For Drainage Solutions (160-200mm)





375020002 Floor Drain

Description

Floor Drain in ABS with removable odor trap

Hydraulically designed for self-cleaning and maximum flow

63 L/min. Flow rate

Pipe connection can be glue fitted or push fitted with available gaskets

Chemical resistance

Impact resistance

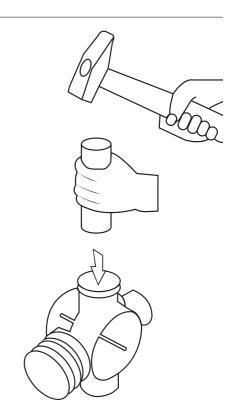
Cover

Fits with all Kessel floor/bathroom drain upper sections (150x150)mm

Dimensions

Three lateral Ø63 inlets with one lateral Ø75 outlet

Outlet, reduction available Ø63 / Ø75


Inlet, reduction available Ø40 / Ø50

Installation Hints

- 1- To remove knock-out plugs, place the opposite side of drain on firm surface then knock out plug using hammer and extension rod.
- 2- Installing the odor trap:

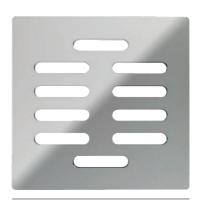
Tilt odor trap so that the bottom section enters outlet.

- 3- Then, firmly insert odor trap into outlet (applying greasers as recommended).
- 4- Ø75-Ø50 and Ø50- Ø40 reductions fit inside inlets or outlet.

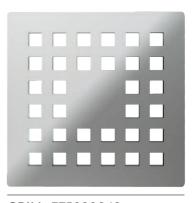
DRAIN COVERS

Drain Covers With ABS Upper Section:

- 10x10 cm.
- Anti-scratch with engraved Kessel logo.
- Made of stainless steel 304.
- Anti-rust cover with adjustable upper section made of ABS.
- Modern and elegant designs for luxurious bathrooms.
- Smooth surface with no sharp edges.


WAVES 375020040

STICKS 375020043


SLOTTED COVER 375020020

DART 375020041

CRESCENT 375020044

GRILL 375020042

TILEABLE COVER 375020021

SBR GASKET

Made of special rubber types used for push and fit drainage solutions where users can easily reassemble the joints on-site.

Kessel gaskets are known for their flexibility and durability in preventing dust and eliminating leakage. Kessel underground drainage systems have the ability to withstand external pressures up to 4000 N/m2.

Kessel SPR Gasket

Composed of 4 ribs to prevent dust, tighten the installation and eliminating leakage.

INSTALLATION INSTRUCTIONS

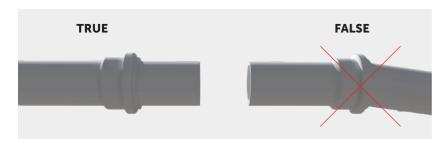
Kessel system installation guide

- I. Pipe and fitting preparation and joining
- 1. Ensure the quality of the gasket installation in the part.
- 2. Specify the suitable overlap length.
- 3. Cut the pipe normally.
- 4. Chamfer the sharp end in angle between 15° and 45° in which the remaining wall thickness shall be at least 1/3 of the original thickness.
- 5. Clean the socket and spigot end.
- 6. Use smart home grease.
- 7. Remove the excess produced from cutting process.
- 8. Jointing (push the spigot end into the socket until it's fully in place).

Cutting

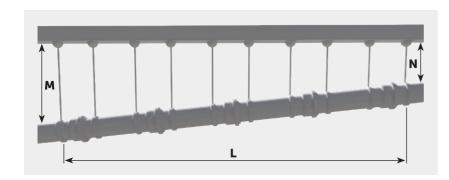
Chamferring

Cleaning


Lubricating

Jointing (push the spigot end into the socket until it's fully in place)

II. Pipe line installation instructions:


- 1. All Kessel systems are designed to drain wastes in atmospheric pressure only with temperatures up to 95°c.
- 2. The horizontal lines shall be inclined as shown:

The inclination will be according to the following equations:

Pipe diameter From 32mm to 75mm (M-N)/L*100 > 2%From 90mm to 200mm (M-N)/L*100 > 1%

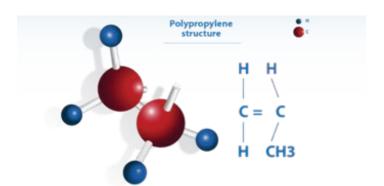
Equation

M: The larger height from the pipe surface to the reference horizontal plane.

N: The smaller height from the pipe surface to the reference horizontal plane.

L: The horizontal distance between the first and last clamps.

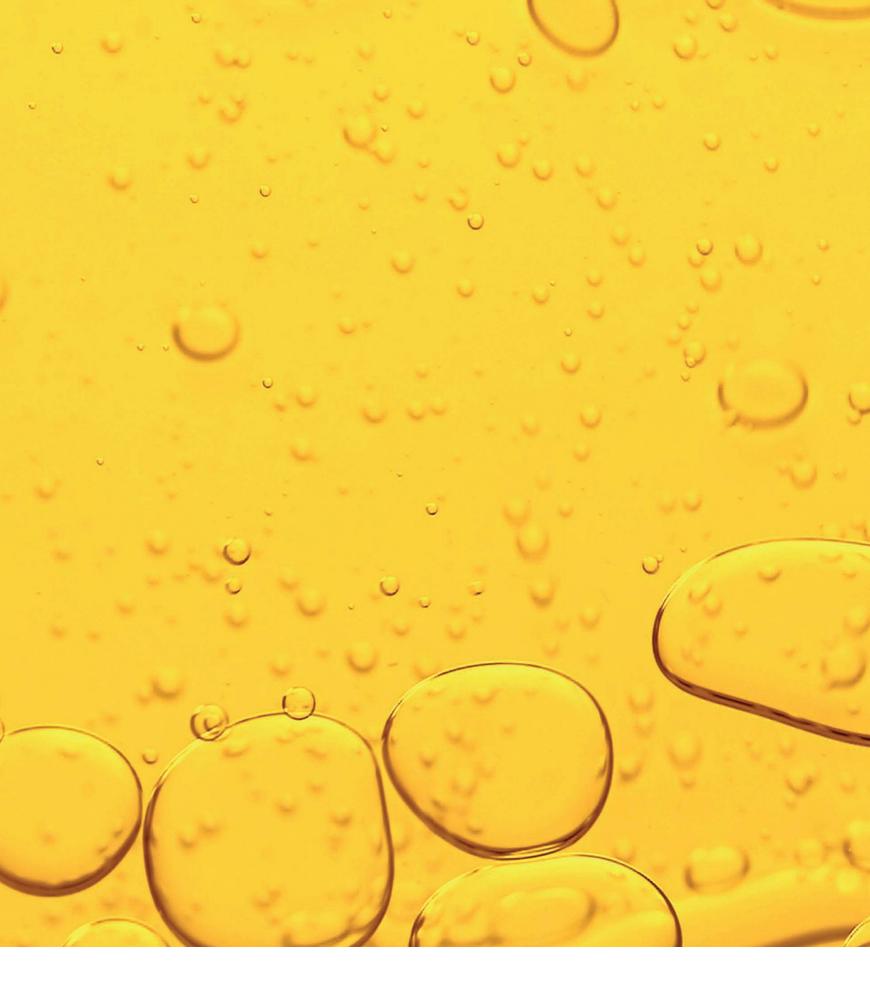
- 3. The two parts should be well aligned.
- 4. Kessel Fittings should always be laid out as fixed points, e.g. installing two clamps right before and after the socket.
- 5. The clamp should be installed carefully near the socket area to prevent ovality in the socket, which may affect sealing quality.
- 6. The distance between the clamps for horizontal and vertical installations should not be greater than the values in the next table


DN	Horizontal Distance (cm)	Vertical Distance (cm)
32	50	120
40	50	120
50	50	150
75	80	200
90	90	200
110	110	200
160	160	200
200	200	200

- 7. When installing heavy duty lines like the horizontal headers that receive high flow rates from one or more water columns, a steel structure member such as beams and angles must be used to hold the pipes, in order to maintain alignment and withstand these heavy loads.
- 8. Additionally, it is recommended to use a pipe between every two fittings to hold structure members or clamps, in order to eliminate slipping or misalignment due to the heavy loads.
- 9. When Kessel pipes are laid in concrete, the socket gaps should be sealed with an adhesive tape in order to prevent penetration of the cement grout.

Material Characteristics

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.


Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar. Its properties are similar to polyethylene, but it is slightly harder and more heat resistant. It is a white, mechanically rugged material and has a high chemical resistance. Polypropylene is the second-most widely produced commodity plastic (after polyethylene) and it is often used in packaging and labeling. In 2013, the global market for polypropylene was about 55 million tons.

PHYSICAL PROPERTIES

Density	905 Kg/m3
Yield strength	30-32 MPa
Flexural Modulus	1300-1500 Mpa
Charpy Impact Strength, notched (23 °C)	60 kJ/m ²
Charpy Impact Strength, notched (-20 °C)	6 kJ/m²

^{*}These values may subjected to minor changes

CHEMICAL CHARACTERISTICS

Selected chemical-resistance classification data for PP according to ISO/TR 10358

Concentration and/or purity of the fluid	Dil Sol. Sol. Sat Sol. tg tg-s tg-l tg-g Work Sol. Susp.	Dilute aqueous solution at a concentration equal to or less than 10% Aqueous solution at a concentration higher than 10% but not saturated Saturated aqueous solution, prepared at 20°C At least technical grade purity Technical grade, solid Technical grade, liquid Technical grade, gas Working solution of the concentration usually used in the industry concerned. Suspension of solid in a saturated solution at 20°C
	S	Satisfactory resistance The pipes can be used for applications in which they are not subjected to pressure or other stresses; for applications in which they are exposed to pressure, the final assessment shall be on the basis of subsequent test under pressure.
Chemical resistance	L	Limited resistance The pipes can be used for applications in which they are not subjected to pressure or other stresses, but in which a certain amount of corrosion can be accepted; for applications in which they are exposed to pressure, the final assessment shall be on the basis of subsequent test under pressure.
	NS	Resistance not satisfactory The pipes are seriously attacked: they shall not be used for either pressure or non-pressure applications. There is no point in conducting tests under pressure as the pipes would be certain to fail these tests.

• Keys for chemical resistance table

Chemical-resistance data for PP

No.	Chemical	m.p. °c	b.p°c	Concentration %	T°c	Resistance
5	Acetone	-95	56	5	100	
				10	50	
		-95	56	tg-l	20	S
				tg-l	50	
				tg-I	60	S
11	Air			tg-g	20	S
				tg-g	50	
				tg-g	60	S
				tg-g	100	S
16	Aluminum			Sat Sol.	20	S
	Chloride			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	80	
				Sat Sol.	100	
17	Aluminum	250		Susp.	20	S
	Fluoride			Susp.	50	
				Susp.	60	S
				Susp.	100	
18	Aluminum			Susp.	20	S
	Hydroxide			Susp.	50	
				Susp.	60	S
				Susp.	100	
19	Aluminum			Sat Sol.	20	S
	Nitrate			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	
20	Aluminum			Susp.	20	S
	Oxychloride			Susp.	50	
				Susp.	60	S
21	Aluminum Potassium			Sat Sol.	20	S
	Sulphate			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	80	
				Sat Sol.	100	
22	Aluminum			Sat Sol.	20	S
	Sulphate			Sat Sol.	50	
	Jaiphaic			Sat Sol.	60	S
				Sat Sol.	100	<u> </u>
27	A ;			C-1 C-1	20	•
23	Ammonia,			Sat Sol.	20	S
	aqueous			Sat Sol.	50	•
				Sat Sol.	60	S

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
24	Ammonia,	-78	-34	tg-g	20	S
	Dry Gas			tg-g	50	
				tg-g	60	
25	Ammonia,	-78	-34	tg-g	20	S
	Liquid			tg-g	50	
				tg-g	60	
26	Ammonium,			Sat Sol.	20	S
	Acetate			Sat Sol.	60	S
				Sat Sol.	100	
28	Ammonium			Sat Sol.	20	S
	Carbonate			Sat Sol.	50	
	(Dec. at 58°C)			Sat Sol.	60	S
				Sat Sol.	100	-
				Sat Sol.	120	
29	Ammonium			Sat Sol.	20	S
	Chloride			Sat Sol.	50	<u> </u>
	J.1.3.1.2.5			Sat Sol.	60	S
				Sat Sol.	100	
34	Ammonium Nitrate	170		Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
36	Ammonium			Sat Sol.	20	S
	Phosphate			Sat Sol.	50	
				Sat Sol.	60	
				Sat Sol.	120	
37	Ammonium			Sat Sol.	20	S
	Sulphate			Sat Sol.	50	
	-			Sat Sol.	60	S
				Sat Sol.	100	S
11	Amyl	-79	137	tg-1	20	S
	Alcohol			tg-1	50	
				tg-1	60	S
				tg-1	100	S
43	Aniline	-6	184	Sat Sol.	20	
				Sat Sol.	50	
				Sat Sol.	60	
				tg-1	20	S
				tg-1	50	
				tg-1	60	S
17	Apple Juice			Work Sol.	20	S
	11			Work Sol.	50	
				Work Sol.	60	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
50	Barium Bromide			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
51	Barium Carbonate			Susp.	20	S
				Susp.	50	
				Susp.	60	S
				Susp.	100	S
52	Barium Chloride			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
53	Barium Hydroxide	78		Sat Sol.	20	S
	_			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
54	Barium Sulphate			Susp.	20	S
	·			Susp.	50	
				Susp.	60	S
				Susp.	100	S
55	Barium Sulphide			Sat Sol.	20	S
	·			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
				Sat Sol.	120	
58	Benzene	6	80	tg-1	20	L
				tg-1	50	
				tg-1	60	NS
				tg-1	100	NS
59	Benzonic Acid	122	250	Sat. Sol.	20	S
				Sat. Sol.	50	
				Sat. Sol.	60	S
				tg-s	120	
51	Benzoyl Alcohol	-15	205	tg-1	20	S
	-			tg-1	50	
				tg-1	60	L
62	Benzyl Chloride	-39	179	tg-1	20	
	-			tg-1	50	
				tg-1	60	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
65	Boric Acid			Dil Sol.	20	S
				Dil Sol.	50	
				Dil Sol.	60	
				Dil Sol.	100	
				Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	
				Sat Sol.	100	
66	Boron Trifluoride	-129	-101	Sat Sol.	20	S
				Sat Sol.	60	
68	Bromine Gas	-7	58	tg-g	20	NS
				tg-g	50	
				tg-g	60	NS
				tg-g	100	NS
69	Bromine Liquid	-7	58	tg-1	20	NS
	, ,			tg-1	50	
				tg-1	60	NS
				tg-1	100	NS
 73	Butane Gas	-135	-0.5	tg-g	20	S
, 5	batane das	133	0.5	tg-g	50	J
				tg-g	60	
 74	n-Butanol	-80	117	tg-1	20	S
				tg-1	50	
				tg-1	60	L
				tg-1	80	_
				tg-1	100	
 83	Calcium Carbonate			Susp.	20	S
				Susp.	50	
				Susp.	60	S
				Susp.	100	S
84	Calcium Chlorate			Sat Sol.	20	S
•	Caterani Cinciate			Sat Sol.	50	, and the second
				Sat Sol.	60	S
				Sat Sol.	120	3
85	Calcium Chloride			Sat Sol.	20	S
55	Caterain Cintoriae			Sat Sol.	50	<u> </u>
				Sat Sol.	60	S
				Sat Sol.	80	.
				Sat Sol.	100	S
88	Calcium Nitrate			Sat Sol.	20	S
55	Catciani Mitiate			Sat Sol.	50	3
				Sat Sol.	60	S
				Sat Sol.	80	3
				50	100	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T °c	Resistance
101	Chlorine Dry Gas			tg-g	20	NS
	•			tg-g	50	
				tg-g	60	NS
				tg-g	100	NS
L02	Chlorine Water			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	L
				Sat Sol.	80	
				Sat Sol.	100	
L03	Chlorine Wet Gas			tg-g	20	
				tg-g	50	
				tg-g	60	
				tg-g	80	
L05	Chlorobenzene	-45	132	tg-1	20	
	5510001120110		102	tg-1	50	
				tg-1	60	
				tg-1	80	
				tg-1	100	
107	Chloroform	-64	62	tg-1	20	L
107	Chlorolomi	-04	0Z	tg-1	50	
				tg-1	60	NS
				tg-1	100	NS
110	Chlorosulphonic	68	147	50	20	
110	Acid	00	in	50	20	NS
	Acid		vac.	tg-s	50	113
			140.	tg-s	60	NS
				tg-s	100	NS
141	Diesel Fuel			Work Sol.	20	
	Dieserraet			Work Sol.	60	
				Work Sol.	100	
155	Ethanol	-114	78	40	20	
	Ethanot	117	, 0	40	50	
				40	60	
				95	20	S
				95	50	3
				95	60	S
				tg-1	20	5
				tg-1	50	
				tg-1	60	
				tg-1	100	
176	Formaldehyde	-92	-19	Dil Sol.	20	
_, 5	Torridacilyae	72	1.5	Dil Sol.	60	
				Dil Sol.	80	
				30 to 40	20	S
				30 to 40	50	3
				5U to 4U	50	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
185	Gasoline (Fuel)			Work Sol.	20	NS
				Work Sol.	50	
				Work Sol.	60	NS
				Work Sol.	100	NS
 186	Gelatine			Sol.	20	S
				Sol.	50	
				Sol.	60	S
187	Ginger Ale			Work Sol.	20	
188	Glucose	146		Sol.	20	S
	(Dec. at >200 °C)			Sol.	50	
				Sol.	60	S
				Sol.	100	S
				Sol.	120	
189	Glycerine	20	290	tg-1	20	S
				tg-1	50	
				tg-1	60	S
				tg-1	100	S
				tg-1	120	
190	Glycolic acid	80		Sol.	20	
				Sol.	60	
				Sol.	100	
				30	20	S
				30	60	
				65	100	
192	Heptane	-90	98	tg-1	20	L
				tg-1	60	NS
				tg-1	80	
				tg-1	100	NS
L94	Hexane	-94	69	tg-1	20	S
				tg-1	50	
				tg-1	60	L
				tg-1	80	
195	1- Hexanol	-52	158	tg-1	20	
				tg-1	60	
196	Honey			Work Sol.	20	S
					50 60	S
					00	3

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
199	Hydrochloric acid	-112	-85	Up to 10	20	S
	, , , , , , , , , , , , , , , , , , , ,			Up to 10	50	
				Up to 10	60	S
				Up to 10	80	
				Up to 10	100	S
				20	20	S
				20	50	3
				20	60	S
				20	80	3
				20	100	S
				10 to 20	20	S
						3
				10 to 20	50	
				10 to 20	60	S
				10 to 20	80	
				10 to 20	100	S
				Up to 25	20	S
				Up to 25	60	
				Up to 25	80	
				Up to 25	100	
				30	20	S
				30	60	L
				30	100	L
				>30	20	S
				>30	60	
				>30	80	
				>30	100	
				36	20	S
				36	50	
				36	60	
				36	80	
				38	100	
		-112	-85	Conc.	20	S
		112	03	Conc.	50	3
				Conc.	60	
				Conc.	80	
				Conc.		
200	Hydrochloric Acid,			tg-g	20	S
	Dry Gas			tg-g	50	
				tg-g	60	S
201	Hydrochloric Acid,			tg-g	20	S
	Wet Gas			tg-g	50	
				tg-g	60	S
204	Hydrofluoric Acid,			tg-g	20	
	Gas			tg-g	40	
				tg-g	60	
205	Hydrogen			tg-g	20	S
				tg-g	60	
				tg-g	120	
213	lodine, in Alcohol	114	183	Work Sol.	20	S
-	.,			Work Sol.	60	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
216	Isooctane		99	tg-1	20	L
				_	60	NS
					100	NS
220	Kerosene		150	Work Sol.	20	
			to 250	Work Sol.	100	
239	Mercurous Nitrate			Sol.	20	S
	ricical das Micace			Sol.	50	, and the second se
				Sol.	60	S
				Sol.	100	J
				Sat Sol.	20	S
				Sat Sol.	60	S S
				Sat Sol.	100	3
240	Mercury			tg-1	20	S
					60	S
					120	
244	Methyl Acetate	-98	57	tg-1	20	S
				tg-1	50	
				tg-1	60	S
245	Methyl Alcohol	-97	65	5	20	S
- 10	r ieuryt / ieeriot	3.	00	5	50	
				5	60	L
				5	100	L
		-97	65	tg-1	20	S
		-37	03	tg-1	50	3
					60	
				tg-1 tg-1	80	
						_
254	Milk			Work Sol.	20	S
				Work Sol.	50	
				Work Sol.	60	S
				Work Sol.	100	S
260	Nickel Acetate			Sat Sol.	20	
				Sat Sol.	40	
				Sat Sol.	60	
261	Nickel Chloride			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	, i
262	Nickel Nitrate			Sat Sol.	20	S
102	MICKEL MILITALE					3
				Sat Sol.	50	•
				Sat Sol.	60	S
				Sat Sol.	120	
263	Nickel Sulphate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	

No.	Chemical	m.p. °c	b.p°c	Concentration %	T°c	Resistance
265	Nitric acid			5	20	S
203	With C deld			5 5	50	3
				5	60	
				5	80	
				10	20	S
				10	50	
				10	60	NS
				10	80	
				10	100	NS
				20	20	S
				20	50	
				20	60	NS
				20	80	
				20	100	NS
				25	20	S
				25	50	
				25	60	NS
				25	80	
				25	100	NS
				30	20	S
				30	50	NG
				30	60	NS
				30	80	NG
				30	100	NS
				30 35	120 20	
				35	50	
				35	60	NS
				35	80	143
				35	100	NS
				40	20	113
				40	50	
				40	60	
				40	80	
				40	120	
				up to 45	20	
				up to 45	50	
				up to 45	60	
				up to 45	80	
				50	20	L
				50	50	
				50	60	NS
				50	80	
				50	100	NS
				>50	20	NS
				>50	50	
				>50	60	NS
				>50	100	NS
				65 85	120 20	
				٥ɔ	20	
				I .		l

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
266	Nitrobenzene	6	210	tg-1	20	S
				tg-1	50	
				tg-1	60	L
272	Oxalic Acid (Subl.)	102		Dil Sol.	20	
				Dil Sol.	60	
				Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	L
				Sat Sol.	10	NS
				50	100	
273	Oxygen, Gas			tg-g	20	S
_,,	Oxygen, das			tg-g	50	J
				tg-g	60	
				tg-g	100	
283	Petroleum Ether			Work Sol.	20	ı
-03					60	L L
	(Ligroin)			Work Sol.		L
				Work Sol.	100	
284	Phenol	41	182	Sol.	20	
				Sol.	60	
				Sol.	80	
				5	20	S
				5	60	S
				5	120	
				50	80	
				90	20	S
				90	40	
				90	60	
		41	182	tg-s	20	
				tg-s	50	
				tg-s	60	
287	Phosphine	-134	-88	tg-g	20	S
				tg-g	40	
				tg-g	60	S
288	Phosphoric Acid	42		Up to 50	20	S
				Up to 50	50	
				Up to 50	60	S
				Up to 50	80	
				Up to 50	100	S
				50 to 75	20	S
				50 to 75	50	3
				50 to 75	60	S
				50 to 75	80	J
				50 to 75	100	
						S
				25 to 85	20	3
				25 to 85	50	c
				25 to 85	60	S
				25 to 85	80	
				25 to 85	100	S
				98	100	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
328	Propane, Gas	-190	-45	tg-g	20	S
	·			tg-g	120	
329	Propionic Acid	-20	141	50	20	
				50	60	
				>50	20	S
				tg-1	20	
				tg-1	60	
35	Silicone Oil			tg-1	20	S
				tg-1	60	S
				tg-1	100	S
340	Sodium Acetate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
				tg-s	80	
341	Sodium Acid Sulphate (See346)					
342	Sodium Antimonate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
343	Sodium Arsenite			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
344	Sodium Benzoate			Sat Sol.	20	
				Sat Sol.	40	
				Sat Sol.	60	
				35	20	S
				35	60	L
				50	100	
345	Sodium Bicarbonate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S
346	Sodium Bisulphate			Sat Sol.	20	S
-				Sat Sol.	40	
				Sat Sol.	50	
				Sat Sol.	60	S
				50	100	
347	Sodium Bromide			Sat Sol.	20	S
,	Socialii Bronniae			Sat Sol.	40	<u> </u>
				Sat Sol.	50	
				Sat Sol.	60	S
				50	120	J
				30	120	

No.	Chemical	m.p. °c	b.p°c	Concentration %	T°c	Resistance
348	Sodium Carbonate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	80	-
				Sat Sol.	100	
				25	20	S
				25	50	3
				25	60	S
				25	80	3
				25	100	
						۶
				Up to 50	20	S
				Up to 50	50	
				Up to 50	60	S
				Up to 50	80	
				Up to 50	100	L
349	Sodium Chlorate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	80	
				Sat Sol.	100	
350	Sodium Chloride			Sat Sol.	20	S
				Sat Sol.	50	-
				Sat Sol.	60	S
				Sat Sol.	80	3
				Sat Sol.	100	
						S
				10	20	3
				10	50	
				10	60	S
				10	80	
				10	100	S
351	Sodium Chlorite			Dil Sol.	80	
				2	20	S
				2	60	L
				2	100	NS
				20	20	S
				20	40	
				20	60	L
				20	100	NS
 352	Sodium Chromate			Dil Sol.	20	S
	Sociality Simoniace			Dil Sol.	50	J
				Dit Sot. Dil Sol.	60	S
				Dil Sol.	80	J
357	Sodium Fluoride			Sat Sol.	20	S
33/	Sodium Fluoride					3
				Sat Sol.	50	_
				Sat Sol.	60	S
				Sat Sol.	100	
362	Sodium Hydrogen			Sat Sol.	20	S
	Sulphite			Sat Sol.	60	
				50	100	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
363	Sodium Hydroxide			Sol.	20	S
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Sol.	50	
				Sol.	60	S
				Sol.	80	-
				Sat Sol.	20	
				Sat Sol.	60	
				1	20	S
				1	50	3
				1	60	S
				1	100	S
				5	20	3
				10 to 35	20	S
				10 to 35	50	3
				10 to 35	60	
				10 to 35	80	
				30	80	_
				40	20	S
				40	50	
				40	60	
				40	80	
				10 to 60	20	S
				10 to 60	50	
				10 to 60	60	S
				10 to 60	100	S
364	Sodium Hypochlorite			2	100	
				5	20	S
				5	50	
				5	60	S
				10 to 15	20	S
				10 to 15	50	
				10 to 15	60	
366	Sodium Nitrate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	-
367	Sodium Nitrite			Sat Sol.	20	S
307	Jodiani Minte			Sat Sol.	50	J
				Sat Sol. Sat Sol.	60	S
				Sat Sol.	100	3
				3at 30t.	100	
371	Sodium Phosphate,			Sat Sol.	20	S
	Acid			Sat Sol.	50	
				Sat Sol.	60	S
372	Sodium Phosphate,			Sat Sol.	20	S
	Neutral			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	S

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
373	Sodium silicate			Sol.	20	S
				Sol.	50	
				Sol.	60	S
				Sat Sol.	20	
				Sat Sol.	50	
				Sat Sol.	60	
				50	100	
374	Sodium sulphate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	
				0,1	20	S
				0,1	50	
				0,1	60	S
375	Sodium sulphide			Sat Sol.	20	S
				Sat Sol.	60	
376	Sodium sulphite			Sat Sol.	20	S
				Sat Sol.	60	S
				Sat Sol.	100	
				40	20	S
				40	60	S
				40	100	S
380	Sulphar dioxide, dry gas	-73	-10		20	S
					60	
381	Sulphar dioxide, wet gas	-73	-10		20	S
					40	
					60	

No.	Chemical	m.p. °c	b.p°c	Concentration %	T°c	Resistance
707	Sulphuric acid			up to 10	20	S
383	Sulpriuric acid			up to 10	50	3
				up to 10	60	S
				up to 10 up to 10	80	3
				up to 10	100	S
				15	20	S
				15	50	3
				15	60	
				15	80	
				15	100	
				10 to 30	20	S
				10 to 30	60	S
				10 to 30	80	3
				10 to 50	20	S
				10 to 50	60	3
				10 to 50	80	
				10 to 50	120	
				50	20	S
				50	50	
				50	60	L
				50	80	_
				50	100	L
				60	120	_
				50 to 75	20	
				50 to 75	60	
				50 to 75	80	
				80	120	
				50 to 90	20	
				50 to 90	60	
				50 to 90	80	
				90	100	
				75 to 90	20	
				75 to 90	50	
				75 to 90	60	
				75 to 90	80	
				95	20	
				95	50	
				95	60	
				95	80	
				95	100	
				96	20	S
				96	50	
				96	60	L
				96	80	
				96	100	NS
				98	20	L
				98	40	
				98	50	
				98	60	NS
				98	80	
				98	100	NS
				fuming	20	L
				fuming	50	
				fuming	60	NS
				fuming	100	NS
	I			l	I	<u> </u>

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
393	Toluene	-95	111	tg-1	20	L
				tg-1	50	
				tg-1	60	NS
				tg-1	100	NS
394	Trichloroacetic Acid	58	197	Up to 50	20	S
				Up to 50	40	
				Up to 50	60	S
				tg-s	40	
396	Trichloroethylene	-85	87	tg-1	20	NS
	,			tg-1	50	
				tg-1	60	NS
				tg-1	80	
				tg-1	100	NS
401	Turpentine			tg-1	20	NS
				tg-1	50	
				tg-1	60	NS
				tg-1	100	NS
402	Urea	133		Sol.	20	
				Sol.	50	
				Sol.	60	
				Sol.	80	
				Sol.	100	
				Sat Sol.	20	S
				Sat Sol.	50	3
				Sat Sol.	60	
				Sat Sol.	80	
		133		10	20	
		155		10	50	
				10	60	
				10	80	
				10	100	
				10	100	
404	Urine			10	20	S
				10	50	
				10	60	S
406	Vinegar			Work Sol.	20	S
	_			Work Sol.	60	S
408	Water				20	S
					50	J
					60	S
					80	J
					100	S
					120	J
414	Water, Sea				20	S
					50	
					60	S
					80	
					100	S
					120	

No.	Chemical	m.p. °c	b.p °c	Concentration %	T°c	Resistance
420	Zinc Carbonate			Susp.	20	S
720				Susp.	50	
				Susp.	60	S
				Susp.	100	
421	Zinc Chloride			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	
				58	20	S
				58	50	
				58	60	S
422	Zinc Chromate			Sat Sol.	20	
				Sat Sol.	60	
423	Zinc Cyanide			Sat Sol.	20	
				Sat Sol.	60	
424	Zinc Nitrate			Sat Sol.	20	S
				Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	
425	Zinc Oxide			Susp.	20	S
				Susp.	50	
				Susp.	60	S
				Susp.	100	
426	Zinc Stearate	125		Susp.	20	
				Susp.	50	
				tg-s	100	
427	Zinc Sulphate			Sat Sol.	20	S
	•			Sat Sol.	50	
				Sat Sol.	60	S
				Sat Sol.	100	

NOTES —		
110123		
	 	······································

Zero Leakage, Zero Contamination, Zero Corrosion, Zero Blockage

www.egic.com.eg

Address: 6th of October - industrial Zone no. 4 Bani sweif - industrial Zone no. 2. info@egic.com.eg Customer Service: 19678